
A Local Search Algorithm for Train Unit Shunting

with Service Scheduling

Roel van den Broek *1,2, Han Hoogeveen�1, Marjan van den Akker�1,
and Bob Huisman§2

1Utrecht University
2Dutch Railways

January 20, 2021

Abstract

In this paper we consider the Train Unit Shunting Problem ex-
tended with Service Task Scheduling. This problem originates from
Dutch Railways (NS), which is the main railway operator in the Nether-
lands. Its urgency stems from the upcoming expansion of the rolling
stock fleet needed to handle the ever increasing number of passengers.
The problem consists of matching train units arriving on a shunting
yard to departing trains, scheduling service tasks such as cleaning and
maintenance on the available resources, and parking the trains on the
available tracks such that the shunting yard can operate conflict-free.
These different aspects lead to a computationally extremely difficult
problem, which combines several well-known NP-hard problems. In
this paper we present the first solution method covering all aspects
of the shunting and scheduling problem. We describe a partial order
schedule representation that captures the full problem, and we present
a local search algorithm that utilizes the partial ordering. The pro-
posed solution method is compared to an existing Mixed Integer Lin-
ear Program in a computational study on realistic instances provided
by NS. We show that our local search algorithm is the first method
to solve real-world problem instances of the complete shunting and

*r.w.vandenbroek@uu.nl
�j.a.hoogeveen@uu.nl
�j.m.vandenakker@uu.nl
§bob.huisman@ns.nl

1



scheduling problem. It even outperforms current algorithms when the
train unit shunting problem is considered in isolation, i.e. without ser-
vice tasks. Although our method was developed for the case of the
Dutch Railways, it is applicable to any shunting yard or service loca-
tion, irrespective of its layout, that uses self-propelling train units and
that does not have to handle passing trains.

1 Introduction

The Nederlandse Spoorwegen (NS ), or Dutch Railways, is the largest pas-
senger railway operator in the Netherlands. The number of passengers on
the Dutch railway network will typically reach its peak in the morning and
evening. During these rush hours, most of the rolling stock of NS is on the
way to accommodate the flux of commuters. Outside the peak hours fewer
trains are needed to serve all the passengers. The resulting surplus of rolling
stock is parked off the main railway network at shunting yards such as the
example shown in Figure 1.

Due to the proximity of shunting yards in the Netherlands to major
stations, located in urban areas, their size, and thus their parking capacity,
is very limited, reaching occupancies of up to 90%. Dense shunting yard
layouts are used to exploit the available space efficiently, resulting in highly
constrained train movements on the infrastructure.

The process of operating a shunting yard is called shunting and has
the following three components: matching, parking, and routing. In the
matching part we have to assign arriving train units to departing trains
such that the required train composition — an ordered sequence of train
unit types — is satisfied; here it does not matter which train unit we use, as
long as it is of the correct type. The problem of finding a feasible shunting
plan for the combined parking, routing and matching problem, in which
every train departs on time from the shunting yard, is commonly known as
the Train Unit Shunting Problem (TUSP).

While solving the shunting problem is in itself already a considerable
challenge (Lentink et al. (2006)), it is even more difficult for shunting yards
that provide additional services. To achieve high passenger satisfaction, reg-
ular maintenance and cleaning of trains is crucial. However, due to the dense
timetable and the high utilization of both railway lines and rolling stock,
NS cannot afford to take trains out of service frequently. Therefore smaller
service activities, such as cleaning the interior, washing, and maintenance
inspections are carried out during off-peak breaks of the trains. This is done
at specialized shunting yards, called service sites. The service activities are

2



constrained by the availability of resources such as maintenance crews or
cleaning installations, and have to be completed before the train departs
from the service site. Moreover, they have to take place at specific locations
at the service site, which requires additional shunting moves. Shunting plans
for service sites have to include a feasible service activity schedule, detail-
ing for each service task when, and by which resource it will be processed.
We will refer to the resulting planning problem as the Train Unit Shunting
Problem with Service Scheduling (TUSPwSS).

The objective in the TUSPwSS is to find a feasible solution, which is
a shunting and service schedule that can be executed as planned without
violating any physical or safety constraints on the railway yard. In this
paper we assume that the input to the TUSPwSS is deterministic. That is,
all incoming trains will arrive on schedule and there is no uncertainty in the
durations of service tasks and train movements.

Constructing a conflict-free shunting and service schedule by hand is a
time-consuming task, even for the experienced planners at NS. To handle
the increasing number of passengers, the fleet of rolling stock of NS will be
extended in the coming years. This makes this task even more complicated.
Therefore, automated decision support tools need to be developed to help the
human planners cope with the complex planning and scheduling problems
at the service sites.

From a computational point of view, finding feasible solutions for the
TUSPwSS is an extremely difficult problem. It combines several well-known
NP-hard problems. The service task scheduling can be viewed as an Open
Shop Scheduling Problem with machine flexibility (multiple identical re-
sources), buffer and blocking constraints (shunting), and release dates and
deadlines (based on the timetable). To determine whether all trains can be
parked, a Bin Packing Problem has to be solved. Furthermore, a parked
train is allowed to be reallocated to a different track if, for example, it is
blocking another train’s movement. Hence, the routing in the shunting plan
strongly resembles sliding block puzzles such as the Rush Hour Problem (see
Flake and Baum (2002)). Mathematical programming techniques have been
thoroughly investigated for the basic shunting problem (see e.g. Lentink
et al. (2006)) with varying success, but typically do not generalize well to
the resource-constrained scheduling problems that we have here because of
the planning of washing and cleaning; furthermore, these cannot deal with
the addition of relocating parked trains. Kamenga et al. (2019) recently de-
veloped a mathematical programming formulation for the integrated version
of the parking and maintenance problem, which results in a huge ILP even
for small instances.

3



As challenging as these individual problems are, the algorithmic com-
plexity of constructing shunting and service plans arises mainly from the
strong dependencies between the components. This interaction between the
different elements makes it practically impossible to effectively decompose
the problem into multiple smaller, largely independent problems. Therefore
decomposition approaches, which have successfully been applied to many
similar complex problems, do not seem very promising here.

Our contribution

The main contribution of this paper is that we present the first algorithm
capable of solving the complete Train Unit Shunting Problem with Service
Scheduling (TUSPwSS) problem for real-world instances. It is based on a
new partial ordering schedule of the shunting and service plan, as well as a
local search algorithm that exploits the partial ordering to find solutions for
the TUSPwSS efficiently. The proposed solution method is currently uti-
lized by NS to estimate the capacity of their service sites. Moreover, pilot
runs for testing its usability in daily-life operation take place at Eindhoven.
Furthermore, even in comparison with a state-of-the-art mixed integer pro-
gramming heuristic developed with NS specifically for the restricted case
of shunting yards without service facilities (based on the work of Lentink
(2006)), our local search algorithm outperforms the MIP on realistic test
instances. Therefore, NS has decided to use our approach for solving the
shunting problems at their yards.

In the remainder of this paper, we first provide an overview of recent litera-
ture on shunting problems in Section 2. Then, we give a problem description
of the Train Unit Shunting Problem with Service Scheduling in Section 3. In
Section 4 we outline our algorithm by formulating a partial ordering schedule
of the shunting and service plan that captures the entire planning problem,
and we propose local search neighborhoods that operate on this partial or-
dering. In Section 5, the solution method is tested on realistic problem
instances based on the service sites operated by NS. Finally, in Section 6 we
present our conclusions and indicate some directions for future research.

2 Literature Overview

The train unit shunting problem with service scheduling combines train
shunting with a resource-constrained scheduling problem. As the shunting
problem is the main component of the TUSPwSS, we will focus primar-

4



Figure 1: The “Kleine Binckhorst” shunting yard is operated by NS. The
yard contains a washing installation at track 63, a cleaning platform between
tracks 61 and 62, and an inspection pit at track 64. Tracks 52 to 59 are used
to park trains. The lengths of these parking tracks range from 202 to 480
meters, and each track can contain multiple train units.

ily on literature related to passenger train shunting. Resource-constrained
scheduling problems have been studied extensively over the past decades,
and we will therefore only highlight literature on variants of the Job Shop
and Open Shop Problems that resemble the scheduling part of TUSPwSS.

In the literature several types of shunting are distinguished. The most
common one is freight train scheduling. Here shunting yards are used as a
hub: freight trains come in from several originations at the shunting yard,
where they are split and recombined such that cars with the same destina-
tion can be transported efficiently. The goal here in general is to minimize
the number of cars that miss their connection and to minimize the num-
ber of movements needed to compose the trains. If we compare this to our
shunting problem, then we notice several major differences. First of all, the
freight train scheduling problem is mainly a sorting problem, where in con-
trast to our problem for each individual car the destination is given and the
order of the cars in the departing trains does not matter, which implies that
the matching problem does not play a role. Next, our train units can move
independently, which makes it possible to move them during the night to
undergo service or to get them out of the way when they block the way for
other units, whereas freight cars need a locomotive to drive (or are pushed
off a hump) and are usually not moved between classification and depar-
ture. Finally, shunting yards used for freight trains have a standard lay-out
with several parallel classification tracks, whereas in our case the tracks on
the shunting yard are more interconnected (see Figure 1). Therefore, in the
remainder of this section we do not discuss the freight yard shunting prob-
lems. We refer the interested reader to the surveys by Gatto et al. (2009)
and Boysen et al. (2012) and to the classification scheme by Hansmann and

5



Zimmermann (2008).

2.1 Passenger Train Shunting

The Train Unit Shunting Problem (TUSP) was first introduced by Freling
et al. (2005) and consists of matching train units in arriving trains to po-
sitions in the departing trains, and parking these train units on a track at
the shunting yard. These train units are self-propelled and can be coupled
to form a single, longer train. The authors use a decomposition approach
in which a train unit matching is constructed first. In the matching prob-
lem, every train unit in each arriving train is assigned to exactly one po-
sition in a departing train, such that the departing trains consist of the
correct train types, and the number of times arriving trains have to be split
into smaller trains is minimized. The corresponding mathematical model is
solved using the standard MIP solver CPLEX. For the parking problem, the
authors assume that the arriving trains are split based on the matching on
the arrival track and that departing trains are combined on the departure
track. Between arrival and departure, the trains are parked on a track at the
shunting yard. A column generation approach, with sets of trains that can
be parked on the same track as columns, is used to find a feasible parking
plan. The authors propose a dynamic programming algorithm to solve the
pricing problem. The routing of the trains on the shunting yard is not taken
into account. They generated a shunting plan for a typical weekday at the
shunting yard in Zwolle, consisting of eighty train units to be parked, in
roughly half an hour.

In Lentink et al. (2006), the train unit shunting problem is extended
with the subproblem of finding a route over the shunting yard for each train
movement. They propose a four stage approach to construct solutions for
this variant of the TUSP. First a matching of train units is determined
using the algorithm proposed by Freling et al. Second they present a graph
representation of the physical layout of a shunting yard to estimate the
duration of moving a train from its arrival track to some parking track and
back to its departure track. In the third step these estimates are included in
the objective of the column generation approach proposed by Freling et al. to
prefer parking assignments with low travel times. Finally, the actual routes
are computed by a heuristic using the graph representation and the track
occupation resulting from the previous step. The authors have shown that
the time needed to generate a feasible shunting plan, including routing, for
the shunting yard in Zwolle was around twenty minutes with their approach.

Instead of solving all components of the TUSP sequentially, Kroon et al.

6



(2006) construct solutions for the matching and parking subproblem simul-
taneously. This greatly increases the complexity of the problem, resulting in
a mathematical formulation for the integrated approach that contains a large
number of train collision constraints. Testing the model on a realistic case
at the shunting yard in Zwolle revealed that there were over 400.000 con-
straints, which was too much for the CPLEX solver to find a feasible solution
in a reasonable amount of time. To reduce the number of train collision con-
straints, the authors grouped these in clique constraints. This allowed them
to find feasible solutions for their test case. Unfortunately, even with the
reduction in constraints, the computation time increases rapidly for larger
problems, taking several hours to complete.

Several alternative solution methods to solve the TUSP have been pro-
posed by Haahr et al. (2015). They compared constraint programming,
column generation and two-staged MIP models with a greedy construction
heuristic and a reference MIP formulation on TUSP instances with LIFO
tracks. Their results showed that exact techniques are outperformed by the
greedy and two-staged heuristics due to excessive memory and computation
time requirements.

In all these approaches, the flexibility of a shunting yard is not used to
its full extent: parked trains will remain on the same track for the entire
duration of their stay at the shunting yard. That is, a train is not allowed to
be moved to another location once it has been parked. In contrast, we pro-
pose a heuristic that allows trains to be relocated at a different track if that
is beneficial to the shunting plan, thus increasing the planning flexibility.

An integrated approach with parking reallocation has been studied by
Van den Akker et al. (2008) as well. They propose a greedy heuristic and
a dynamic programming algorithm to solve the combined matching and
parking problem. The heuristic uses track assignment and matching rules
that select the locally best action on arrival and departure such that train
units are parked in the correct order for the departing trains. The dynamic
programming approach looks at all possible shunting track or matching as-
signments at each event on the shunting yard, and relies heavily on pruning
nodes in the dynamic programming network that are unlikely to lead to the
optimal solution as a way to reduce its computation time. In contrast to
the model formulated by Kroon et al., both algorithms allow arriving or
departing trains to wait at the platform to avoid conflicts at the shunting
yard. Furthermore, the dynamic programming algorithm is also capable of
shunting a parked train unit to a different track, resulting in much more
flexibility in the shunting plans. This property is difficult to include in
the linear programming approaches proposed by other authors, due to the

7



exponential increase in variables and constraints, even when allowing each
parking interval to be split only once. The greedy heuristic is quite fast, but
it is not capable of finding feasible solutions for complex problems. Even
with the pruning rules, the exact algorithm requires more than ten minutes
to find a plan for a dozen train units, making it hard to use in practice.

In the work of Lentink (2006) a practical extension to the TUSP is stud-
ied. Besides matching, parking and routing, the train units on a service
site have to be cleaned as well. The cleaning subproblem is a crew schedul-
ing problem, in which each train unit should be cleaned by a crew before
it departs from the site. The first three steps are solved using the meth-
ods proposed in Lentink et al. (2006). The schedule for the cleaning crews
is constructed last. The cleaning problem is modeled as a single machine
scheduling problem without preemption, where each cleaning job needs to
be finished in a time-window, and the speed of the machine varies over time
to reflect the size of the cleaning crew in each shift. A mathematical model
based on this formulation, in which the planning horizon is discretized into
one minute blocks, is solved using CPLEX. Instead of viewing the cleaning
as a single machine scheduling problem, we formulate it, together with addi-
tional service tasks, as a resource constrained scheduling problem, where the
resources are only accessible from a subset of the tracks. In our approach,
we do not solve it as an isolated subproblem in a sequential heuristic, as the
task schedule heavily affects the parking intervals and the movements of the
trains in the shunting plan.

An integral approach is used by Jacobsen and Pisinger (2011) to solve a
train parking and maintenance problem. Each train has to be maintained
at one facility or workshop located on the service site and parked before and
after the service task. Using three meta-heuristics, Guided Local Search,
Guided Fast Local Search and Simulated Annealing, the authors attempt
to construct schedules such that no trains are blocked by other trains, no
departure delays occur and the makespan of the service tasks is minimized.
Their results show that the local search approaches provide results close to
shunting plans constructed by the MIP model, while taking only seconds of
computation time compared to the twelve hours needed by the MIP solver.
However, the largest instances contain no more than ten trains, with one
maintenance task per train, which is not representative of real-world sce-
narios. In contrast to our work, the scope of their study was limited to
task scheduling and parking. The absence of matching and routing makes
it difficult to directly translate their heuristics to the TUSP with service
scheduling.

In a very recent paper, Kamenga et al. (2019) present a mixed inte-

8



ger linear programming formulation to solve the integrated version of the
parking and maintenance problem. The objective is to minimize a weighted
function of the cost incurred by: cancellation of maintenance operations,
delayed departures, coupling and uncoupling, routing of the train units, and
the number and duration of the shunting movements. The authors work
with three different sets of trains: arriving trains, intermediate trains, and
departing trains; a combination of these corresponds to the route of a train
unit. Incoming trains are split, if necessary, to form intermediate trains.
The shunting of the trains is modeled in the trajectories of the intermediate
trains; it is possible to relocate a train by connecting two or more interme-
diate trains. Finally, the coupling of the trains is modeled by the departing
trains. Since all these possible trains have to enumerated, the size of the
mixed ILP becomes huge: modeling an instance of ten trains requires ap-
proximately 2.5 million binary variables and 4.5 million constraints. The
authors have tested their approach on a set of six real-life instances from
the Metz-Ville station in France with up to 10 trains that must be shunted
and some 25 passing trains; since there are no less than 16 tracks available,
it is never necessary to park two trains on the same track. Due to the large
size of the mixed ILPs, CPLEX is not able to solve any of these six instances
in one hour; the remaining integrality gap varies between 7% and 24%.

2.2 Resource-constrained Scheduling

The service scheduling component of the TUSPwSS can be viewed as an
Open Shop problem, where jobs, each consisting of an unordered set of oper-
ations, have to be completed to minimize an objective such as the makespan
or the tardiness. Each operation has to be executed on a machine from a
given set, and operations of the same job or on the same machine are not
allowed to be processed simultaneously. The Open Shop problem, as well as
the closely related Job Shop problem in which the operations of a job are
ordered, are often represented as a disjunctive graph, introduced by Roy and
Sussmann (1964). In the disjunctive graph model, each vertex corresponds
to an operation, and precedence relations are expressed by arcs. Undirected
edges are used to indicate that two operations cannot be processed at the
same time. A feasible solution for the scheduling problem can be obtained
by directing all the edges such that the graph becomes acyclic.

Even large instances of the Job Shop and Open Shop problem, as well as
their numerous variants, can often be solved to near-optimality in reasonable
time by combining the disjunctive graph representation with a local search
approach. The local search relies on flipping the direction of arcs to swap the

9



Figure 2: Examples of train units used by NS, both of the type ICM. The
sub-types ICM-3 and ICM-4 indicate the number of carriages in the train.

order of operations on the same machine (Dell’Amico and Trubian (1993)),
and, in the case of the Open Shop Problem, operations in the same job
(Liaw (1999)), under problem specific conditions that safeguard the acyclic
property of the disjunctive graph.

One interesting variant of the Job Shop and Open Shop problem that
relates to the service scheduling problem at the shunting yards is to include
machine flexibility and blocking constraints in the problem. An Open (or
Job) Shop problem is flexible if alternative machines are available for the
operations, while in a Blocking Open (or Job) Shop problem operations
block their machine until the job is moved to another machine. Examples of
the former property in the TUSPwSS are service sites with multiple cleaning
or maintenance crews, whereas the latter occurs when a train has to wait at
some service facility until another train moves out of the way. Bürgy et al.
(2011) proposed local search operators that preserve the acyclic property of
the disjunctive graph for the Flexible and Blocking Job Shop problems and
showed that these operators can be used to find good solutions for medium-
sized problem instances of this complex scheduling problem.

3 Problem Description

The problem we consider in this paper is the Train Unit Shunting Prob-
lem with Service Scheduling (TUSPwSS), an extension of the Train Unit
Shunting Problem (TUSP) as formulated by Kroon et al. (2006).

The main input of the TUSP is a timetable detailing the arrivals and
departures of trains and a description of the infrastructural layout of the
shunting yard. To include the service scheduling component at the service
sites, the input of the TUSPwSS is supplemented with a set of resources as
well as the service activities of each train unit that need to be completed
before it leaves the service site.

All arrivals and departures of trains on the shunting yard are described
by the timetable, and the shunting yard is assumed to be empty before

10



the first arrival and after the last departure. Note that a surplus of rolling
stock at the start or end of the planning horizon can be modeled as early
arrivals or late departures, respectively. The entries in the timetable consist
of the scheduled time of the arrival or departure, the track by which the
train will enter or exit the shunting yard, and a specification of the train.
The rolling stock of NS consists of bi-directional and self-propelling railway
vehicles that move without a dedicated locomotive. Train units are classified
according to train type and train sub-type. Train units of the same type can
be coupled to form longer combinations; a train is a coupled sequence of
one or more train units. The sub-type indicates the number of carriages
— and thus the length — of the train unit. For example, Figure 2 shows
two train units of the same train type, ICM, but different sub-types. The
ICM-3 and ICM-4 subtypes contain three and four carriages, respectively. In
TUSPwSS, the level of detail of a train specification depends on whether the
entry corresponds to an arrival or a departure. The timetable specifies the
exact sequence of physical train units in an arrival, whereas for a departing
train, it only indicates the train composition, which is a sequence of train
sub-types. This provides the flexibility to the planners at the shunting yard
to assign a train unit to any position with a matching train sub-type in the
departing compositions. The scheduled arrival times in the timetable are
assumed to be deterministic, i.e. we assume that all trains will arrive on
time.

The service sites operated by NS consist of a set of tracks connected by
switches. Tracks can either be dead-end (LIFO-tracks) or accessible from
both sides (free tracks). The length of each track indicates the maximum
total length of trains that can be parked simultaneously on that track. The
duration of train movements is a function of the paths taken by the trains
over the shunting yard. This function is part of the input as well. A service
site also includes a set of resources, such as cleaning equipment or mainte-
nance crews. Each resource can only operate on trains parked on specific
tracks.

Each train unit t at the service site has a set of service activities that
have to be completed before t leaves the site. Each service activity s for train
t has a given processing time ps,t and requires one resource of a specific type
for its entire duration. Preemption of activities is not allowed, and each
resource can only process a single activity at a time. Furthermore, different
service activities of the same train unit or different coupled train units cannot
be performed simultaneously. We assume in this study that there are no
predetermined precedence relations between the service activities.

The objective of the TUSPwSS is to decide whether there exists a feasible

11



shunting and service plan. TUSPwSS consists of the five components below.

1. Matching: Arriving train units must be assigned to distinct positions
in departing trains such that the train unit type matches the required
type in the train composition. All departing trains should leave the
shunting yard on time; shunting plans with delayed departures are not
feasible.

2. Combining and Splitting: As a result of the arrival-departure
matching, arriving trains might have to be split and reassembled to
form the departure composition. Splitting and combining train units
takes time, up to several minutes in practice.

3. Parking: During its stay on the shunting yard, whenever a train is
not moving, it is parked on some track on the shunting yard. The
length of a track should not be exceeded by the total length of trains
that are parked simultaneously on it. A train can only depart from
the track it is positioned on if it is not blocked by other trains on at
least one accessible side of the track. Trains are allowed to relocate
during their stay at the shunting yard. Relocating a train requires an
additional train movement.

4. Routing: For each train movement, the shunting plan should con-
tain a path over the infrastructure. Following the notation of Gallo
and Di Miele (2001), a train collision or crossing occurs whenever the
movement of a train is obstructed by another train. Shunting plans
containing crossings are not feasible. The duration of a train move-
ment is determined by its path as well as the driving characteristics of
the shunting yard.

5. Service Scheduling: All service activities of the train units should
be scheduled such that they are completed before their corresponding
train unit departs from the service site, and each resource can only
process one task at the same time.

3.1 An illustration of the TUSPwSS

To illustrate the complexity of the train unit shunting problem with service
scheduling, let us consider a simple scenario of three train units at the service
site depicted in Figure 3. There are two arriving and two departing trains
in this example, which are scheduled according to the timetable in Table 1.
Note that that the sequences of train units in this table are from left to right.

12



Cleaning

0

1

120m

2

240m

3

120m

4

120m

Figure 3: An example of a service site. Trains enter and exit the site over
track 0 and can only be parked on tracks 1 to 4. The tracks are connected
by two switches. The length of the parking tracks is displayed in meters. A
cleaning platform allows internal cleaning tasks to be performed on trains
positioned on track 3.

Arriving Train Time

(1, 2) 12:00
(3) 12:45

Departing Train Time

(ICM-3) 13:00
(ICM-4, ICM-3) 14:00

Table 1: The arrivals and departures in the example scenario. The departure
trains specify the composition of sub-types instead of the train units, since
the assignment is part of the matching problem. The ordering of the train
units or sub-types indicates from left to right the order of the train units or
sub-types in the train on the service site.

When a train moves to the left side of the shunting yard, the left-most train
unit in the sequence is at the head of the train.

The train units are of the ICM type, depicted in Figure 2 and described
in Table 2. Two train units are scheduled for internal cleaning, as can be
seen in Table 2. In this example, we assume that every train movement takes
five minutes. Furthermore, the combining and splitting of trains requires ten
minutes.

Recall that to construct a shunting plan we have to decide on

� the assignment of incoming train units to positions in outgoing trains,

� how we are splitting and combining the trains,

� the order of service activities such as cleaning,

� which tracks to move the trains to,

13



Train Units Type Service Tasks

1 ICM-3 (82m) cleaning (30 minutes)
2 ICM-3 (82m) cleaning (30 minutes)
3 ICM-4 (107m) none

Table 2: The train units in the example scenario.

� and the order of the train movements.

In our example, it follows from the timetable that the arriving train (1, 2)
has to be split into two parts, and that one of the two has to be coupled with
train unit 3 to satisfy the requirements of the departing train compositions.
Furthermore, with only one cleaning platform, we have to decide on which
order we will clean train units 1 and 2.

Let us start the construction of a feasible shunting and service plan by
matching incoming to outgoing trains. We assign train unit 2 to the train
departing at 13:00; the other two train units will be part of the departing
train at 14:00. As train unit 2 is the first to depart, we schedule it to
be cleaned first as well, before train unit 1. The scheduled train activities
in our shunting plan are listed in chronological order in Table 3, and are
illustrated in Figure 4. In this shunting and service plan, train (1, 2) arrives
at track 0 and moves to track 2 to be split. Then train unit 2 heads to the
cleaning platform for its service task, and train unit 1 is moved to track 4
to clear track 2 for the arrival of the second train. After its arrival on track
2, train unit 3 moves to track 1 to avoid blocking the departure of train
unit 2. When train unit 2 has departed, train unit 1 goes to the cleaning
platform. Both train units 3 and 1 move to track 2 to be combined. Finally,
the combination (3, 1) departs from the service site.

This example illustrates the main complexity of the Train Unit Shunt-
ing Problem with Service Scheduling. Although the individual shunting
subproblems — matching, combining and splitting, servicing, parking and
routing — are seemingly easy to solve, the interaction between these compo-
nents will make most shunting plans infeasible. Although parking on track
2 is possible, it blocks virtually all routes on the service site. Furthermore,
poorly parked trains might require multiple reversals of direction to avoid
crossings, which can easily cause departures to be delayed. The service task
schedule is determined entirely by the matching, as there is not enough time
to clean both train units of the first arriving train before one of them has
to depart. The matching is dependent on the parking and routing as well;
switching the order in which train units 1 and 2 depart will result in an

14



Tracks

0 1 2 3 4

12:00

12:15

12:30

12:45

13:00

13:15

13:30

13:45

14:00

split
(1,2)

(1)

clean
(2)

(1)

(3)

clean
(1)

(3)

combine
(3,1)

arrival of (1,2)

arrival of (3)

departure of (2)

departure of (3,1)

Figure 4: An overview of the positions of trains over time in the shunting
plan listed in Table 3. Dotted lines represent train movements.

15



Start End Train Activity Tracks

12:00 12:05 (1,2) Arrival 0 → 2
12:05 12:15 (1,2) Splitting 2
12:15 12:20 (2) Movement 2 → 3
12:20 12:50 (2) Cleaning 3
12:20 12:25 (1) Movement 2 → 4
12:45 12:50 (3) Arrival 0 → 2
12:50 12:55 (3) Movement 2 → 1
12:55 13:00 (2) Departure 2 → 0
13:00 13:05 (1) Movement 4 → 2
13:05 13:10 (1) Movement 2 → 3
13:10 13:40 (1) Cleaning 3
13:10 13:15 (3) Movement 1 → 2
13:40 13:45 (1) Movement 3 → 2
13:45 13:55 (3) Combining 2
13:55 14:00 (3,1) Departure 2 → 0

Table 3: The train activities in a shunting plan for the example scenario
provided in Tables 1 and 2.

infeasible solution due to the small time-window between the first arrival
and departure.

4 Local Search Heuristic

To find feasible solutions for the Train Unit Shunting Problem with Ser-
vice Scheduling, we propose a local search approach that includes the full
problem, i.e. it integrates the matching, combining and splitting, parking,
service scheduling and train movement components of the planning into a
single model. Local search algorithms gradually improve some candidate
solution, a shunting service plan in case of the TUSPwSS, by making small
changes to it, and have been applied in the field of Operations Research with
great success. Methods to create these changes are called (local search) oper-
ators, and the set of solutions attainable from the current candidate solution
of the local search by the same operator is known as the neighborhood.

Essential to any local search algorithm is a solution representation that
properly captures all important aspects of the solution, while simultane-
ously allowing for easy modification through the local search operators and
efficient evaluation of the objective. This is especially important as well as

16



challenging for the TUSPwSS, because of the complex structure of its solu-
tions and its tightly intertwined subproblems. We will model each activity
in the shunting plan as a node in a precedence graph. We will refer to the
resulting directed acyclic graph as the activity graph, which is a partial order
schedule of the activities. The main challenge is that the graph should be
updated efficiently and must remain acyclic after applying an operator.

When solving TUSPwSS, we are facing the decision problem of finding
feasible shunting and service plans, where feasibility is difficult to achieve be-
cause of the high utilization factor of the yard. To alleviate this difficulty, we
transform the decision problem of finding feasible shunting and service plans
into an optimization problem by relaxing some of the feasibility constraints
and apply local search on the resulting problem. Instead of enforcing that
these relaxed constraints are respected in all solutions explored by the local
search, we penalize violations of the constraints in the objective function. A
shunting and service plan constructed by the local search is then feasible if
and only if none of the relaxed problem constraints are violated.

We have based our algorithm on the Simulated Annealing framework by
Kirkpatrick et al. (1983) and Černỳ (1985), which is a stochastic local search
technique that has seen many successful applications to other combinatorial
optimization problems. A simulated annealing algorithm randomly selects a
neighbor and accepts it immediately as the candidate solution for the next
iteration if it is an improvement over the current solution. If the selected
solution is worse, it is accepted with a certain probability depending on the
difference in solution quality and the state of the search process. Let b be the
selected neighbor of the current solution a, and suppose we are minimizing
an objective function f . If f(b) > f(a), then the probability of acceptance
P is

P = e
f(a)−f(b)

T , (1)

where T is a control parameter that will be decreased during the search
to accept less deterioration in solution quality later on in the process. See
Section 5 for an overview of other parameters of the simulated annealing
relevant to the computational experiments.

In the following we will present the objective function and the distinction
between hard and soft constraints that we apply to find a feasible solution.
Then we explain the representation of the solution by an activity graph and
after that we discuss the local search operators. Finally, we describe the
construction of an initial solution.

17



4.1 Optimization Objective and Constraints

Recall that we transform the decision problem of finding feasible shunting
and service plans into an optimization problem by relaxing some of the
constraints and penalizing violations of these constraints in the objective
function. The relaxation of constraints is a trade-off between the size of
the solution space and the ease of exploration of the solutions in the local
search. Therefore, the decision on which constraints to relax largely defines
the structure of the solution space that the local search will explore. In
the remainder of this subsection, we start by providing a summary of the
problem constraints. Then we motivate the relaxation choices that we make
in our proposed method, and we conclude with an overview of the objective
function.

We categorize the constraints of the shunting and service problem in four
groups, namely

� matching: assign incoming train units to outgoing trains, splitting
and combining the trains if necessary;

� sequencing: find an order for the activities that share the same ser-
vice resource or movement infrastructure;

� temporal: ensure that trains can enter the yard directly upon arrival
and depart on time;

� parking: park the trains without exceeding the track capacity or
blocking train movements.

Constructing an assignment of arriving train units to departing trains
that satisfies the matching constraints is not a difficult problem in itself.
Moreover, any mutation of the matching — regardless of the feasibility of
the resulting assignment — will likely have a large impact on the entire
shunting and service plan, as it affects the parking, movement and maybe
also servicing components of the solution. Therefore, we keep the match-
ing constraints strict, guaranteeing that any solution will have a feasible
matching.

Imposing both the sequencing constraints of the service tasks and the
temporal constraints on the train departures as hard constraints makes it
difficult to find a feasible schedule for the service tasks. This implies that
this combination of constraints severely restricts the number of candidate
solutions that can be reached efficiently during the search and hence relax-
ing some of the constraints will be beneficial to the search process. In our

18



approach we maintain the sequencing constraints as hard constraints, and
relax the temporal constraints. That is, we allow the local search to con-
struct shunting plans with delayed trains as intermediate solutions at the
cost of a penalty.

Similarly, imposing the combination of sequencing and parking con-
straints on the train movements creates a subproblem similar to computa-
tionally difficult sliding block problems such as RushHour. Furthermore, the
parking constraints on the track capacity alone implies that a Bin Pack-
ing problem has to be solved in each iteration, which becomes difficult in
instances with a large degree of utilization of the shunting yard. Therefore,
we have chosen to relax the parking constraints.

Violations of the relaxed temporal and parking constraints are pe-
nalized in the objective function. For a shunting and service plan, define
Delay(p) as the number of delayed entering and departing trains, Crossing(p)
as the number of crossings (i.e. collisions), and TrackCapacity(p) as the
number of occasions in which the combined train length of trains parked
on a track τ exceed the capacity lτ . An arrival delay will occur when an
arriving train cannot move immediately from the arrival track to its park-
ing location due to a movement of another train. These characteristics are
used to quantify the weighted number of constraint violations, denoted by
violations(p), of the shunting and service plan as

violations(p) = wdelay·Delay(p)+wcrossing·Crossings(p)+wtrack·TrackCapacity(p),
(2)

where each type of violation is multiplied by its corresponding weight w > 0,
and p is feasible only if violations(p) = 0.

Although the expression above can be used directly as the objective of
the local search, we extend the objective function with several additional
terms to guide the local search to more promising regions in the solution
space. The cost function minimized in the objective of our approach is

cost(p) = violations(p)+wtime·TotalDelayTime(p)+wmovement·NumberOfMovements(p),
(3)

which penalizes the severity of a delay in addition to the occurrence of
violations. Furthermore, shunting plans with fewer movements are both
preferred by the planners at NS and easier to improve by the local search.
Therefore, we include the number of movements in the objective with weight
wmovement, which is chosen small enough to never prefer a reduction in the
number of movements over the resolution of a conflict.

19



Notation Description
A Set of train activities in a shunting plan
POS Partial order schedule
M Set of movement activities, M⊆ A
ta Train associated with activity a ∈ A
oa Start location of activity a ∈ A
da Final location of activity a ∈ A
ra Resource required by activity a ∈ A

Table 4: Overview of the notation used to describe the shunting plans.

4.2 Solution Representation and Evaluation

Our representation of a shunting plan in the local search procedure consists
of a set A of train activities and a set POS of precedence relations that
defines a partial order schedule on the train activities. See Table 4 for an
overview of the notation used in this section.

The activity set consists of four types of activities: arrival, departure,
service, and movement. The precedence relations arise from the sequencing
constraints. These constraints enforce that activities of the same train or
on the same service resource do not overlap. Moreover, they forbid conflicts
between two moving trains. Making sure that a solution satisfies these
constraint boils down to sequencing activities, i.e. imposing precedence
relations. Now we obtain the activity graph, which is a directed graph whose
nodes are the activities and arcs are the precedence relations.

Each activity a ∈ A is associated to a train ta, which is an ordered list
of train units. We will refer to the set of all train movement, arrival and
departure activities as the movement activity set M ⊆ A, with for each
a ∈M an origin oa and a destination da. Note that an arrival or departure
activity represents a train movement from or to the main railway network,
respectively. Each service activity s is associated with a resource rs; its
location is the destination da of its predecessor movement. The splitting
and combining of trains is modeled implicitly in the data structure by a
difference in the train composition of the trains associated with subsequent
activities. The representation of the example shunting plan described in
Section 3.1 is shown in Figure 5.

In the activity graph, the paths taken by the train movements and the
start time of the activities are not included explicitly. To keep the routing
computation tractable, the local search generates activity graphs with a total
ordering on the activities in the movement activity set M, such that never

20



two movements overlap in time. Consequently, we can compute routing
and time assignment in two steps, respectively. In the first step we strictly
enforce the total ordering of the movements. We relax this restriction in the
second step to allow trains to move simultaneously as long as this does not
result in conflicts.

In the first step of a solution evaluation, we compute a path for each
movement activity separately and determine the number of crossings and
track capacity violations. To achieve this, we iterate over the movement
activities according to the total order in the activity graph. For each move-
ment activity a, we remove the train ta from the origin track oa, storing the
number of crossings caused by this train. Then, we compute the minimum
cost path of train ta from oa to destination da. Note that, due to the re-
striction of the movement ordering in the partial order schedule to a total
ordering, all movements occur sequentially. Therefore, we can formulate
the routing problem of a single train movement as a single-source shortest
path problem in a graph representation of the shunting yard similar to the
approach taken by Lentink (2006). The cost of a path in this graph is equal
to the time it takes for train ta to move over the path, plus the number of
crossings that occur along the path times a weight λ, where λ is sufficiently
large to ensure that the number of crossings is minimized. To find the short-
est path we apply the A∗ algorithm (Hart et al. (1968)), where we use the
path durations in the static case without parked trains as the lower-bound
heuristic on the true path cost. After computing the path of the movement,
we add train ta to the destination track da and update the track capacity
violation count if necessary.

In the second step, we assign start times to all activities in the activity
set. Due to our restriction on the partial order schedules described earlier,
all train movements would be scheduled sequentially, which could result in
many delayed departures in the shunting plan. To decrease unnecessary
delays, we relax the precedence relations between pairs of train movements.
Then, for each activity a ∈ A, we compute its start time as the maximum
over its release date (if it is an arrival) and the completion time of all its
direct predecessors in the activity graph. More specific, when we consider
movement activity a, we compute the earliest possible starting time of a
such that

� a starts after the completion times of all scheduled activities, i.e. ac-
tivities that have already been assigned a time-stamp, that have a
train unit in common with train ta;

� the path of a does not intersect with the path of any scheduled move-

21



Arrive
(1,2)

0 → 2

Move
(2)

2 → 3

Service
(2)

cleaning

Move
(1)

2 → 4

Arrive
(3)

0 → 1

Depart
(2)

3 → 0

Move
(1)

4 → 3

Move
(3)

1 → 2

Service
(1)

cleaning

Move
(1)

3 → 2

Depart
(3,1)

2 → 0

Figure 5: The partial order schedule of the shunting plan described in Sec-
tion 3.1. The nodes represent train activities, with the corresponding train
between parentheses, and the arcs indicate precedence relations of activities
that require the same train unit (solid arcs), service resource (dotted), or
movement infrastructure (dashed). The i → j notation below a node indi-
cates a movement from track i to track j.

ment a′ that happens at the same time;

� a does not cause additional collisions or track capacity violations.

Many shortest path problems have to be solved in each candidate so-
lution evaluated by the local search, as even small, local changes to the
shunting plan can affect multiple train movements. In our approach, we
only recomputed the paths of movements that might have been affected by
the application of an operator in the iteration.

4.3 Search Neighborhoods

In the local search framework, new candidate solutions are selected from
search neighborhoods centered around the current solution. To address the
different aspects of the train unit shunting problem with service scheduling,
we propose several search neighborhoods that are tailored to the different
components of the planning. The corresponding operators either change the
location of a train in the plan, or alter the activity graph directly by adding
and removing vertices or arcs.

22



⇓

Move
t1

τ1 → τ2

Move
t1

τ2 → τ3

Move
t1

τ1 → τ4

Move
t1

τ4 → τ3

(a) Change the parking location.

⇓

Move
t1

τ1 → τ2

Move
t1

τ2 → τ3

Move
t1

τ2 → τ4

Move
t1

τ1 → τ2

Move
t1

τ4 → τ3

(b) Insert a train movement.

⇓

Move
t1

τ2 → τ4

Move
t1

τ1 → τ2

Move
t1

τ4 → τ3

Move
t1

τ1 → τ2

Move
t1

τ2 → τ3

(c) Remove a train movement.

⇓

Move
t2

Move
t1

Move
t3

Move
t2

Move
t1

Move
t3

(d) Change the train movement ordering
by shifting one of the movements.

⇓

Service
t2

Service
t1

Service
t3

Service
t2

Service
t1

Service
t3

(e) Change the schedule of the service ac-
tivities by either assigning a service ac-
tivity to a different compatible resource
or changing the activity ordering within
a resource.

⇓

Movement
t2

Departure
t2

Movement
t1

Departure
t1

Movement
t1

Departure
t2

Movement
t1

Departure
t2

(f) In the matching, swap the assignment
of two incoming trains to outgoing train
compositions.

Figure 6: Overview of neighborhoods in the proposed local search method.
ti denotes train i, τj → τk indicates a train movement from track τj to track
τk.

23



To avoid deadlocks, the application of an operator to the current solution
must preserve the acyclicity of the partial order schedule. As a result of the
dependencies between the problem components, this means that when we
change the shunting and service plan in one dimension, we also need to
modify the plan in other dimensions. For example, if we change the service
schedule, then the train movements have to be adapted accordingly.

We will now provide an overview of the proposed local search neighbor-
hoods for the parking, routing, service scheduling and matching components.
The splitting and combining activities follow implicitly from the other ac-
tivities, and therefore have no dedicated local search neighborhoods. For
each of the proposed neighborhoods that might contain solutions with cyclic
precedence relations, we will show the methods implemented to restrict the
neighborhood to acyclic solutions. An overview of the neighborhoods is
shown in Figure 6.

Parking

Conflicts in the shunting plan such as crossings and track capacity violations
can often be solved through changes in the parking location of trains. The
track assignment neighborhood consists of all shunting plans that can be
constructed by changing the track on which a train is parked. To change
the location of a train, we select two consecutive movements m1 and m2 of
the train, and assign both the destination of m1 and the origin of m2 to
a different track, as shown in Figure 6a. If the train is split into several
smaller trains after m1, then the next train movements of all the parts have
to be updated. Similarly, if m2 is preceded by a combine activity, then all
predecessor train movements of the different train parts need to be updated
as well.

Train Movement

The paths taken by the trains are recomputed whenever the track occupancy
changes, and as such, no local search operator is needed for the path-finding
component of the routing problem. However, as we maintain a linear or-
dering of the movements in the partial order schedule, we can attempt to
improve a shunting plan by reordering the movements. Suppose that train
a is parked on a LIFO-track. If train b arrives on the same track just before
train a departs, a crossing will occur. In this case, it is beneficial to let a
depart before b arrives. The search neighborhood of rearranging movements
is denoted as the shift movement neighborhood. The corresponding local

24



search operation, depicted in Figure 6d, consists of selecting a movement
activity and shifting it earlier or later in the linear ordering imposed on the
train movements. To ensure that the resulting shunting plan is valid, only
shifts that preserve the acyclic property of the partial ordering are included
in the search neighborhood.

In some cases, we want to move a train temporarily to a different track.
For example, if train a has to move over track τ while train b is parked there,
then one approach to resolve the planning conflict is to move train b to a
different track just before the movement of a. In the partial order sched-
ule this operation corresponds to inserting an additional movement activity
for train b, visualized in Figure 6b. The insert movement neighborhood
consists of all solutions obtainable by adding a movement activity.

Conversely, it can also be beneficial to remove redundant train move-
ments. Suppose that a train in the shunting plan has a service activity on
track τ1, then moves to track τ2 for parking, before continuing to track τ3
for another service activity. If we could skip the parking and move straight
from track τ1 to τ3 without conflicts, then we have eliminated a movement
activity, resulting in more temporal flexibility for other train movements.
Solutions in the remove movement neighborhood are constructed by re-
moving a train movement from the solution, see Figure 6c.

Service Scheduling

The local search operators that adjust the resource assignment and order of
the service tasks are based on operators proposed in the literature on similar
problems such as the Job Shop Problem (Dell’Amico and Trubian (1993)),
the Open Shop Problem (Liaw (1999)) and their generalized counterparts
(Bürgy et al. (2011)). All valid solutions that can be constructed by swap-
ping the order of two consecutive service tasks, that are either assigned to
the same resource or involve the same train, are part of the service order
swap neighborhood, see Figure 6e. Furthermore, the resource assign-
ment neighborhood contains the solutions obtained by assigning a single
service activity to a valid position in the activity schedule of a different
suitable resource. Observe that rescheduling service activities often requires
adjusting the precedence relations of movements from and to these service
activities.

25



Matching

The matching swap operator, shown in Figure 6f, changes the matching
of incoming trains to outgoing departure compositions. It selects two trains
t1 and t2 in the shunting plan of identical train composition and swaps their
assignment to the departing trains.

4.4 Initial Solution

To construct a starting point for the local search, we propose a simple se-
quential algorithm for the TUSPwSS. We start with the matching subprob-
lem. A perfect matching between the incoming and outgoing train units is
constructed such that no arriving unit is matched to a position on a train
that departs before all service tasks of the unit can be finished. Note that
we can immediately abort the search for a feasible shunting plan if no per-
fect matching is found, as the existence of such a matching is a necessary
condition for plan feasibility.

From the train unit matching we can derive the minimum number of
splits and combines that have to be performed to transform the incoming
trains into the desired departure compositions. Train units coupled on ar-
rival can only remain together if

1. all units are assigned in the same order to consecutive positions on a
departing train,

2. their arrival time plus the sum of the durations of their service tasks
is no more than the departure time, and

3. for each service task there is a track adjacent to the required facility
that is long enough to harbor all train units at once.

Based on this information, we initialize the partial order schedule:

1. The arrival and departure nodes are added to the solution;

2. For each arrival activity, we add a movement to the graph and connect
it to the corresponding arrival node. Similarly, movements are added
to each departure node;

3. The movements from arrivals and to departures are connected by arcs
to reflect the matching, splitting and combining computed above.

26



In the next step, we construct a service schedule. The service activities
of a train will be scheduled after it has been split, and before it will be
combined in the current plan. The service tasks are scheduled by a list-
scheduling strategy. Trains are sorted on increasing departure time. Service
tasks of the same train are assigned to the resource that becomes available at
the earliest time. If a task can be assigned to multiple resources, the resource
with the currently smallest total workload is selected. Ties in the train task
order are broken randomly. The service activities are then inserted into
the partial order schedule and connected with arcs based on the precedence
relations in the service schedule.

Next, we add movement activities to and from each service activity to
the graph, as trains have to be able to reach the service facilities. The linear
order of movement activities is constructed by sorting the movements by
earliest starting time, based on the service task schedule.

Finally, the parking locations of the trains are assigned. For every train,
we select a random track long enough to store the train for each parking
time-window between consecutive movements, without taking the track oc-
cupation into account.

5 Computational Results

In this section we study the performance of the proposed local search ap-
proach on generated test cases as well as a real-world problem instance.
These instances are based on two shunting yards that are considered diffi-
cult by the planners of NS due to the high degree of utilization of the yards
in practice.

Preliminary tests were conducted to obtain good parameters for our local
search. In all the experiments we have conducted, the local search continued
searching until either a feasible solution was found, or a maximum compu-
tation time of five minutes was reached. The maximum computation time
is based on preferences of NS. The control parameter T of the simulated
annealing decreased exponentially in those five minutes, starting at 1 and
dropping to 0.01 after 300 seconds. The weights of the objective function
used in the experiments are summarized in Table 5. Delays are penalized
more than the other conflicts, as these were observed to be more difficult to
resolve by the local search. Furthermore, the weight of train movements is
small with respect to the weights of the conflicts to ensure that conflict res-
olution is prioritized over the reduction of the number of train movements.
Table 9 shows some results of experiments with different parameter values.

27



The local search procedure randomly selects a candidate solution in a neigh-
borhood and either accepts or rejects it based on its acceptance criterion.
The computations were performed on a computer with an Intel Xeon E5 3.0
GHz processor.

We will compare our simulated annealing approach with a mixed integer
programming heuristic developed by NS for TUSP, i.e. only the matching,
parking and routing subproblems. This tool, called the OPG, first computes
the routing duration of shunting from one track to another, similar to the
approach taken by Lentink et al. (2006). Secondly, the matching and parking
subproblems are solved simultaneously, using the cost estimates of the routes
to find track assignments that simplify the subsequent routing problem. To
find a matching and a parking assignment, a problem formulation based
on the mathematical model introduced by Kroon et al. (2006) is solved in
CPLEX. In the final step of the OPG a MIP model is solved to assign
starting times to all the train movements. The mathematical models in the
OPG lack the flexibility of the local search algorithm to schedule service
tasks or insert additional parking activities. That is, the OPG keeps a
train at the same location during the entire interval between the arrival and
departure of the train. As with the solution method proposed in this paper,
we limit the maximum computation time of the OPG to five minutes. The
OPG finished its computations within the maximum time for almost all the
tested instances.

Weight wdelay wcrossing wtrack wtime wmovement
Value 2 1 1 0.00025 0.01

Table 5: The weights of the components of the objective function in Equa-
tion (3) used in our experiments.

5.1 Real-world Scenario

We have tested our solution method on one of the real-world instances cur-
rently planned manually at NS. The test scenario is a normal week day of
twenty-four hours at the “Kleine Binckhorst”, shown earlier in Figure 1.
The Kleine Binckhorst is a medium-sized service site situated near The
Hague Central Station, and consists mostly of tracks accessible from both
sides. Tracks 906a and 104a connect the Kleine Binckhorst to the main
railway network; parking, reversing, splitting and combining on these tracks
are not allowed due to safety regulations. Tracks 52 to 63, with lengths in
the range of 192 to 473 meters, are available for parking. There are two

28



Train type Reversal base duration Reversal duration per carriage

SLT 2 1
3

VIRM 4 1
2

DDZ 4 1
2

Table 6: The reversal duration of the train types in minutes. The duration
consists of a base time required to transfer control and additional walking
time per carriage.

Sub-type length Cleaning Washing Maintenance check

SLT-4 70 15 23 23

SLT-6 101 20 24 27

VIRM-4 109 37 24 11

VIRM-6 162 56 26 14

DDZ-6 154 56 26 18

Table 7: The train length in meters and the service task duration in minutes
for each train sub-type.

dedicated service facilities: a washing machine on track 63, and a platform
for internal cleaning between tracks 61 and 62. Only a single train can
be cleaned externally at the washing machine. There are two crews at the
cleaning platform, allowing a train to be cleaned at each track adjacent to
the platform. The maintenance checks that are carried out by service crews
at Kleine Binckhorst can take place on any track that is not part of some
facility. The reversal duration of trains and the average service task dura-
tion are listed in Tables 6 and 7. The duration of a movement is computed
using the following Equation (4)

ddriving = Ntracks +
1

2
Nswitches, (4)

where Ntracks and Nswitches are the number of tracks and the number of
switches on the path of the movement, respectively.

The instance that we considered consists of 32 train units, arriving and
departing in 23 and 21 trains, respectively. Due to the timetable, the maxi-
mum number of train units simultaneously present on the service site is 25;
these train units occupy 77 percent of the total track length available for
parking. There are 59 service tasks that must be completed: 27 internal
cleanings, 25 maintenance checks and 7 train washes. Constructing a shunt-

29



ing and service plan for this instance by hand usually takes more than an
hour, even for an experienced planner.

We have used the simulated annealing approach described above to
search for a feasible plan for the test case, which was found after four min-
utes of computation time. In this solution, the 23 arriving trains are split
into 27 trains. The shunt plan contains 88 shunting movements, of which
32 contain a reversal. The large number of reversals results in an average
movement duration of 10 minutes. This means that almost 15 hours of train
movements are needed in this 24-hour shunting plan. In 14 cases a parked
train is shunted to a different track to make room for another train.

The shunting and service plans constructed by the algorithm differ sig-
nificantly from the manually created plan. The solution of the planners
clearly shows a high-level strategy of first doing the maintenance checks on
tracks 56 to 59, followed by internal cleaning and washing, before parking
the trains on tracks 52 to 55 until their departure. In contrast, the plan
produced by the simulated annealing utilizes the tracks and resources of the
service more evenly.

5.2 Generated Instances

To evaluate the performance of the proposed solution method more thor-
oughly, we generated problem instances for two service sites operated by NS.
These instances vary in the number of train units that arrive, but resemble
real-world scenarios at the service sites in all other aspects. For example,
the train compositions and timetable of arrivals and departures, as well as
the required service activities of train units are drawn from distributions
fitted to historical data of the two service sites. The planning interval of the
instances is limited to the night shift, from 6 p.m. to 8 a.m., as most activ-
ities at a service site take place during the night. Furthermore, all nightly
arrivals occur before the first departure in the morning, which means that
the maximum number of train units simultaneously present at the service
site in a problem instance is precisely the total number of arriving train
units. The train type and service task distributions used to generate the
instances are shown in Table 8. The train lengths and the service durations
are as in Table 7. The maximum length of composite trains in our test cases
is three train units, and approximately half the arriving and departing trains
are composed of two or more train units.

One of the two tested service sites is the Kleine Binckhorst. For every
k ∈ {4, 6, . . . , 32}, we generated 50 instances for the Kleine Binckhorst with
k train units. These instances are not necessarily all feasible, particularly the

30



Sub-type Arrival Cleaning Washing Maintenance check

SLT-4 0.28 1.00 0.16 1.0

SLT-6 0.17 1.00 0.16 1.0

VIRM-4 0.41 1.00 0.16 0.58

VIRM-6 0.10 1.00 0.16 0.58

DDZ-6 0.04 1.00 0.16 0.58

Table 8: The Arrival column shows the distribution of the train sub-types
over the arriving trains. The probability that a task has to be performed on
a certain train unit is shown in the last three columns.

instances with many train units are likely to be impossible to solve. When
all train units have to be cleaned internally, the planners at NS estimate the
capacity of Kleine Binckhorst at roughly twenty train units during the night
shift.

Since we want to compare to the OPG, which does not contain parking
relocation, we investigate the impact of the parking relocation neighborhood
on the performance of the local search approach. We ran the simulated
annealing algorithm with and without the parking relocation neighborhood
on all instances. Both variants of the local search method were run with the
settings described at the start of the section.

The results of the experiments are shown in Figures 7 and 8. The pro-
posed solution method is able to plan up to 18 train units reliably, and fails
to solve instances with more than 22 train units. Removing the parking
relocation operator from the local search does not result in significant dete-
rioration of the performance. Both simulated annealing approaches show a
graduate rise in computation time, requiring less than half the allotted time
of five minutes to solve instances with at most 20 train units.

The similarity of the performances of the two local search variants is
likely caused by the number of service activities, as these activities force the
trains to move to or from service facilities, allowing the local search to solve
conflicts in the parking component by changing the service schedule. To test
this hypothesis, we generated similar instances without service tasks. Since
only the matching, combining and splitting, parking and routing problem
components remain, these instances are essentially TUSP instances. We
performed the same experiments with the two simulated annealing variants
as above; the results can be found in Figure 9.

In a pure TUSP instance the simulated annealing variant without the
parking relocation neighborhood performs significantly worse. Without the

31



0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26

So
lv

ed
 In

st
an

ce
s

Train Units

LS LS without relocation

Figure 7: The number of feasible shunting plans found for each set of fifty
night-shift instances of the Kleine Binckhorst. The results of both the simu-
lated annealing with the relocation operator (LS ) and without (LS without
relocation) are shown.

32



0

50

100

150

200

250

2 4 6 8 10 12 14 16 18 20 22 24

C
o

m
p

u
ta

ti
o

n
 T

im
e 

(s
ec

o
n

d
s)

Train Units

LS LS without relocation

Figure 8: The average computation time in seconds of solved night-shift in-
stances of the Kleine Binckhorst. The results of both the simulated anneal-
ing with the relocation operator (LS ) and without (LS without relocation)
are shown.

33



0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

So
lv

ed
 In

st
an

ce
s

Train Units

LS LS without relocation

Figure 9: The number of feasible shunting plans found for each set of fifty
night-shift instances of the Kleine Binckhorst without service tasks. The
results of both the simulated annealing with the relocation operator (LS )
and without (LS without relocation) are shown.

34



additional movements needed to reach the service facilities, trains will be
parked on a single track for their entire stay at the shunting yard, making
it difficult to resolve some conflicts. For example, suppose we have an in-
stance with the arriving train (a, b), where sub-type(a) 6= sub-type(b), and a
departing train composition (sub-type(b), sub-type(a)). Then, without ad-
ditional movements it is not possible on the Kleine Binckhorst to split and
combine train (a, b) into the proper departure composition, as splitting or
combining is not allowed on the arrival track. In instances with a sufficient
number of train units of each type, this type of conflict is often easily re-
solved by changing the matching. However, smaller instances are more likely
to be impossible to solve without the parking relocation neighborhood, as
can be seen in Figure 9.

In general, by removing the service tasks — using the service site only
as a shunting yard — the proposed solution method is capable of finding
feasible shunting plans for more train units, reaching an 85% utilization of
the parking capacity of the service site in some cases. This suggests that
service scheduling and the train movements to and from the facilities are a
major bottleneck in the earlier experiments.

Another set of instances for the Kleine Binckhorst was generated to
compare the local search algorithm with the OPG, the ILP-tool developed
by NS. Similar to the previous experiment, the instances do not contain
service activities. However, instead of only modeling the night shift, the
instances in this set span an entire day, where trains arrive in the evening
and at the end of the morning, and departures occur mostly before the
morning and evening rush hours. The performance of the solution methods
are shown in Figure 10.

The differences between the two local search variants are similar to the
results shown in Figure 9. The OPG shows results resembling those of the
local search without the parking relocation neighborhood, and is outper-
formed by the local search with relocation. So our algorithm outperforms
the OPG for TUSP. The similarity between the results of the OPG and
the local search without relocation can be explained by the mathematical
model in OPG, which does not have the flexibility provided by the parking
relocation neighborhood.

To test the proposed solution method for other service site layouts, we
conducted similar experiments with instances generated for service site OZ,
located near Utrecht Central Station. In contrast to the Kleine Binckhorst,
most parking tracks of OZ are last-in-first-out tracks, see Figure 11. Trains
will arrive and depart via track 117. The connection of track 117 to the
main railway network prohibits parking, reversing, splitting and combining

35



0

2

4

6

8

10

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

LS LS without relocation OPG

Figure 10: The number of feasible shunting plans found for each set of full-
day instances without service tasks of the Kleine Binckhorst. The results of
the simulated annealing variants with the relocation operator (LS ), without
relocation (LS without relocation) and the ILP-based OPG are shown.

Figure 11: The service site “OZ” operated by NS.

36



0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14 16 18 20

So
lv

ed
 In

st
an

ce
s

Train Units

LS LS without relocation

Figure 12: The number of feasible shunting plans found for each set of fifty
instances of service site OZ. The results of both the simulated annealing
with the relocation operator (SA) and without (SA without relocation) are
shown.

of trains on it. Parking is possible on all other tracks visible in Figure 11.
The cleaning platform is accessible from tracks 104 and 105b. Instances for
the night shift are generated using the same parameters as for the Kleine
Binckhorst, with the number of train units ranging from 4 to 22. The same
service tasks are assigned to the train units, with the exception of washing
activities due to the absence of a washing installation. The results, shown
in Figure 12, confirm those of the experiments with the Kleine Binckhorst,
as for TUSPwSS the local search with relocation performs slightly better
than without the relocation operator.

In addition to the relocation neighborhood experiments we investigated
the impact of the values of the local search parameters described in Table 5.
We ran the local seach with seven different parameter settings on a subset
of the instances used in the experiments in Figure 7. The results are listed
in Table 9. Parameter setting 1 describes the parameter values used in the
other experiments in this section.

The experiments show that penalizing the movements is necessary to
solve the majority of the instances, as the parameter settings without move-

37



weights results

set wdelay wcrossing wtrack wtime wmovement feas.(%) comp. (s)

1 2 1 1 0.00025 0.01 92 94

2 2 1 1 0.00025 0 36 182

3 2 1 1 0.00025 0.1 84 69

4 1 1 1 0 0 40 109

5 1 1 1 0 0.01 54 165

6 1 1 1 0.00025 0.01 48 160

7 3 1 1 0.001 0.01 66 98

Table 9: The percentage of solved instances and average computation time
for different parameter values of the local search algorithm.

ment penalties (settings 2 and 4) perform significantly worse than the other
settings. Furthermore, a small incentive to prefer the resolution of delays
over other conflicts increases the likelihood that the local search finds a
feasible solutions.

6 Conclusion and Further Research

In this paper, we have studied the problem of planning the parking and ser-
vicing train units at service sites operated by NS. The research is conducted
with two purposes, firstly to support human planners with the construction
of feasible shunting plans for the service sites, and secondly to improve the
capacity estimates by the management of NS.

We have introduced the Train Unit Shunting Problem with Service schedul-
ing (TUSPwSS). Although the Train Unit Shunting Problem has been stud-
ied, there are no practical algorithms that include the resource-constrained
scheduling of service tasks.

We have presented a local search approach to find feasible plans for
TUSPwSS. This is the first algorithm capable of constructing feasible plans
for real-world instances of the full shunting and service scheduling prob-
lem. The solution method consists of a plan representation that models the
precedence relations between the scheduled activities, as well as local search
neighborhoods exploiting the partial ordering. We have benchmarked our
approach on both generated and real-world instances of service sites oper-
ated by NS. The experiments showed that our solution method is capable
of solving shunting problems on service sites with varying infrastructural

38



layouts within a few minutes.
Moreover, we compared our algorithm to the OPG, a decision support

tool based on state-of-the-art mathematical programming models that has
been developed by NS. In the solutions of the OPG trains are parked at a
fixed place during their stay at the yard. The OPG does not include service
scheduling. Therefore, we included instances without service scheduling in
our experiments.

Comparison with the OPG showed that our local search algorithm is
capable of solving harder instances than the ILP-based OPG. Since an im-
portant difference is the possibility for relocation, we decided to investigate
this aspect further by also running our algorithm without relocation. These
experiments demonstrated that the flexibility to move a train to a differ-
ent track during parking is essential to find feasible plans. Note that in
TUSPwSS the possibility for relocation is obtained partly from the service
schedule, which forces trains to move to service facilities.

The real-world scenario illustrated that the local search approach is a
valuable tool in the planning process at NS by providing human planners
with feasible solutions, drastically reducing the time needed to construct
good plans for service sites. The local search method is currently being used
by NS to obtain a good estimate of the capacity of their service sites by
generating realistic problem instances for varying numbers of train units, and
checking for which number the local search algorithm can still consistently
find feasible solutions.

For the sake of brevity we have limited the scope of this paper to shunting
yards. However, NS is currently performing a pilot for application of the
local search in the daily operation at the railway node Eindhoven. This node
encompasses both the major station Eindhoven and two nearby shunting
yards. The goal of the pilot is to create an integrated shunting plan of the
complete node. To model the railway traffic properly, we have to include
through trains, which are trains that move through the station without
going to a yard. As the schedule of the through trains is predetermined
by the timetable, we model them as train movement activities with fixed
routes, release dates and deadlines in our shunting plans. Furthermore, we
have to adapt the local search to more sophisticated movement constraints,
such as minimum headway between movements over a track or switch, and
non-empty shunting yards at the start and end of the planning horizon.

Preliminary results from the pilot show that in most cases we are able to
find feasible shunting plans for real-world problem instances on these large
and complex locations. Even when the local search fails to find a feasible
solution, the number of conflicts in the final solution is reduced to such an

39



extend that human planners can resolve remaining conflicts in a fraction of
the time that it would take them to construct a shunting plan from scratch.
Although the required computation time on these instances ranges from 15
minutes to an hour, we hope to reduced this by further tuning the parameters
of the local search.

The pilot shows that the main strength of our local search approach lies
in its flexibility, as it is easily adaptable to the often complex constraints that
arise in real-world problem. This is especially appreciated by the practition-
ers at NS, as we are able to quickly incorporate their planning preferences
as well.

Opportunities for further research present themselves both in extending
the scope of the model, and in coping with the complications arising from
the actual operation. With respect to the first, a major component of the
planning process that we have thus far ignored in this paper is the personnel
planning, i.e. assigning activities such as train movements and maintenance
checks to drivers and mechanics, respectively. The physical size of shunting
yards often necessitates the inclusion of walking durations between different
locations, especially for the train drivers. To further support human plan-
ners, we are currently developing methods that construct feasible service
schedules for the personnel as well.

As to the latter, a shunting plan can only be implemented if it is robust
to the everyday disturbances in operations. Both the arrival times of trains
and the durations of service tasks will often vary in practice, and the service
site operators have to adapt to these events. This means that they occa-
sionally have to deviate from the shunting and service plan constructed by
the planners. Ideally, the plan should be able to absorb most disturbances
and require only small adjustments otherwise.

To address this issue we have started research to improve the robustness
of shunting plans. As a first step, we focus on minimizing the likelihood of
delayed departures in the shunting and service plans when the arrival time
of trains and the processing time of service tasks are uncertain. In Van
den Broek et al. (2018) we investigate the predictive power of robustness
measures, i.e. functions that can be computed efficiently from the schedule
and are designed to represent properties of robust schedules. We focus on
measures that represent the likelihood of delays in shunting plans. For the
robustness measures that are strongly correlated with the delay likelihood,
we show in Van den Broek et al. (2019) that our local search finds more
robust shunting and service plans with only little computational overhead
by including the robustness measures in the objective function.

When a shunting and service plan becomes infeasible during the course of

40



the day due to disturbances, the service site operator has to adapt the plan
to the new situation. Preferably, the new solution would closely resemble
the original shunting plan to avoid rescheduling many of the tasks of drivers
and service crews. A variant of the local search algorithm presented in this
paper could be useful to cope with this kind of problem, as it can start
from the original shunting plan and iteratively improve it to regain plan
feasibility. Penalties can be assigned to solutions that deviate too much
from the original plan. Additional research has to be conducted to find a
proper plan-similarity measure or other on-line strategies such as scheduling
policies for the service operators.

References

van den Akker, J. M., H. Baarsma, J. Hurink, M. Modelski, J. J. Paulus, I. Reij-
nen, D. Roozemond, J. Schreuder. 2008. Shunting passenger trains: getting
ready for departure. Proceedings of European Study Group Mathematics with
Industry 63.

Boysen, N., M. Fliedner, Jaehn F., Pesch E. 2012. Shunting yard operations: The-
oretical aspects and applications. European Journal of Operational Research
220.

van den Broek, R., J.A. Hoogeveen, J.M. van den Akker. 2018. How to measure
the robustness of shunting plans. 18th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

van den Broek, R., J.A. Hoogeveen, J.M. van den Akker. 2019. Finding ro-
bust shunting plans. 10th Triennial Symposium on Transportation Analysis,
(TRISTAN 2019).

Bürgy, R., H. Gröflin, D. N. Pham. 2011. The flexible blocking job shop with
transfer and set-up times. Journal of combinatorial optimization 22(2) 121–
144.

Černỳ, V. 1985. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of optimization theory and applications
45(1) 41–51.

Dell’Amico, M., M. Trubian. 1993. Applying tabu search to the job-shop scheduling
problem. Annals of Operations Research 41(3) 231–252.

Flake, G. W., E. B. Baum. 2002. Rush hour is pspace-complete, or “why you should
generously tip parking lot attendants”. Theoretical Computer Science 270(1)
895–911.

Freling, R., R. M. Lentink, L. G. Kroon, D. Huisman. 2005. Shunting of passenger
train units in a railway station. Transportation Science 186(2) 261–272.

41



Gallo, G., F. Di Miele. 2001. Dispatching buses in parking depots. Transportation
Science 35(3) 322–330.

Gatto, M., J. Maue, M. Mihalák, P. Widmayer. 2009. Shunting for Dum-
mies: An Introductory Algorithmic Survey . Springer Berlin Heidelberg,
Berlin, Heidelberg, 310–337. doi:10.1007/978-3-642-05465-5 13. URL
https://doi.org/10.1007/978-3-642-05465-5 13.

Haahr, J. T., R. M. Lusby, J. C. Wagenaar. 2015. A comparison of optimization
methods for solving the depot matching and parking problem. Tech. rep.,
Erasmus Research Institute of Management.

Hansmann, R.S., U.T. Zimmermann. 2008. Optimal Sorting of Rolling
Stock at Hump Yards. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 189–203. doi:10.1007/978-3-540-77203-3 14. URL
https://doi.org/10.1007/978-3-540-77203-3 14.

Hart, P. E., N. J. Nilsson, B. Raphael. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science
and Cybernetics 4(2) 100–107.

Jacobsen, P. M., D. Pisinger. 2011. Train shunting at a workshop area. Flexible
services and manufacturing journal 23(2) 156–180.

Kamenga, F., P. Pellegrini, J. Rodriguez, B. Merabet, B. Houzel. 2019. Train unit
shunting: Integrating rolling stock maintenance and capacity management in
passenger railway stations. RailNorrköping 2019. 8th International Confer-
ence on Railway Operations Modelling and Analysis (ICROMA), Norrköping,
Sweden, June 17th–20th, 2019 . 069, Linköping University Electronic Press,
528–547.

Kirkpatrick, S., C. D. Gelatt, M. P. Vecchi. 1983. Optimization by simulated
annealing. Science 220(4598) 671–680.

Kroon, L. G., R. M. Lentink, A. Schrijver. 2006. Shunting of passenger train units:
an integrated approach. Transportation Science 42(4) 436–449.

Lentink, R. M. 2006. Algorithmic decision support for shunt planning. Ph.D. thesis,
School of Economics, Erasmus University Rotterdam.

Lentink, R. M., P.-J. Fioole, L. G. Kroon, C. van ’t Woudt. 2006. Applying opera-
tions research techniques to planning of train shunting. Planning in Intelligent
Systems: Aspects, Motivations, and Methods 415–436.

Liaw, C.-F. 1999. A tabu search algorithm for the open shop scheduling problem.
Computers & Operations Research 26(2) 109–126.

Roy, B., B. Sussmann. 1964. Les problemes d’ordonnancement avec contraintes
disjonctives. Note DS 9.

42


